Memory space reduction for hidden Markov models in low-resource speech recognition systems
نویسنده
چکیده
Low-cost recognition systems based on hidden Markov models (HMM) for mobile speech recognizers (mobile phones, PDAs) have a limited quantity of memory and processing power. Furthermore, the resources have to be shared between several applications. In this paper memory efficient HMMs were investigated for low-cost recognition platforms. The feature parameter tying HMM and subspace distribution clustering HMM (SDCHMM) were explored. In order to achieve less memory requirements, a shared codebook approach for feature parameter tying HMM and SDCHMM was developed and its effectiveness was experimentally proved. It was shown that this approach leads to a relative increase of word error rate of less than 10% for 50% of memory reduction.
منابع مشابه
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملMicrosoft Word - Hybridmodel2.dot
Today’s state-of-the-art speech recognition systems typically use continuous density hidden Markov models with mixture of Gaussian distributions. Such speech recognition systems have problems; they require too much memory to run, and are too slow for large vocabulary applications. Two approaches are proposed for the design of compact acoustic models, namely, subspace distribution clustering hid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002